
Browse Technologies
Keyword Search
Drug Discovery/Research Tools
Search Results
Displaying: 11 - 20 of 102 Results
SIM-PAL: proteome wide identification of small molecule binding sites
Precise target identification for small molecules is an important and essential step in drug development. Despite its importance, there are very few unbiased, proteome-wide approaches aimed at identifying binding partners for small molecules. In…
Investigators
- Christina Woo
aP2 knock-out mice
AP2 knock-out mutant mice were developed by Dr. Gokhan Hotamisligil at Harvard Medical School (Science. 1996 Nov 22;274(5291):1377-9). AP2, also known as Fatty Acid-Binding Protein 4 (FABP4), encodes the adipocyte FABP. It plays important roles in…
Investigators
- Gokhan Hotamisligil
Polycystic Kidney Disease: Mechanistic Dissection and Discovering Precision Therapeutic Targets
Autosomal-dominant polycystic kidney disease (ADPKD) is a life-threatening monogenic disease that affects nearly 1 million people in the U.S. alone. ADPKD represents a very large unmet medical need, currently without remedy. It is characterized by…
Investigators
- Adrian Salic
KRT14-Cre mouse line
Hemizygous Tg(KRT14-cre)1Amc/J (also known as K14-Cre) transgenic mice were developed in the laboratory of Dr. Andrew P. McMahon at Harvard University. The mouse strain harbors Cre recombinase under the control of human keratin-14 promoter, which…
Investigators
- Andrew McMahon
Ngn3-Cre transgenic mice for studying pancreatic development
Hemizygous transgenic Tg(Neurog3-cre/Esr1*)1Dam/J mice (also known as Ngn3/CreERTM) were developed in the laboratory of Dr. Douglas A. Melton at Harvard University. The mice contain a fusion protein of Cre recombinase and mutant mouse estrogen…
Investigators
- Douglas Melton
Glp1r-ires-Cre (Glp1r-ires-Cre knock-in mice)
Glp1r (Glucagon-Like Peptide 1 Receptor) -ires-Cre knock-in mice were developed in Dr. Stephen Liberles lab at Harvard Medical School. IRES and Cre sequence were inserted after the gene Glp1r, thus the mouse strain expresses Cre recombinase in cells…
Investigators
- Stephen Liberles
Gpr65-ires-Cre (Gpr65-ires-Cre knock-in mice)
Gpr65 (G Protein-Coupled Receptor 65) -ires-Cre knock-in mice were developed by Dr. Stephen Liberles and members of his lab at Harvard Medical School. In these mice, expression of Cre recombinase is controlled by Gpr65 promoter in Gpr65-positive…
Investigators
- Stephen Liberles
Hba-a1 knockout mice
Homozygous Hba-a1 (hemoglobin alpha, adult chain 1) knockout mice (129S-Hba-a1tm1Led/J) were developed by HHMI Investigator Dr. Philip Leder and his lab at Harvard Medical School. While the mice are viable and fertile, they develop anemia with…
Investigators
- Philip Leder
CD1- mice developed in the laboratory of Dr. Michael Grusby
Homozygous Cd1tm1Gru knock-out mice (C.129S2-Cd1tm1Gru/J, also known as CD1-) were developed by Dr. Michael J. Grusby at Harvard University. The mutant mice are deficient in both the Cd1.1 and Cd1.2 genes, and lack the normal natural killer…
Investigators
- Michael Grusby
B6.Cg-Shhtm1(EGFP/cre)Cjt/J mice developed in the laboratory of Dr. Clifford Tabin
This mouse stain, also known as Shhgfpcre was originally described in Cell in 2004. The mice express GFP in all cell expressing Shh, and specifically, in the distal posterior region of the limb buds of embryos aged embryonic day 10 to 12. Mice…
Investigators
- Clifford Tabin